Dialogue Strategy Learning in Healthcare: A Systematic Approach for Learning Dialogue Models from Data
نویسندگان
چکیده
We aim to build dialogue agents that optimize the dialogue strategy, specifically through learning the dialogue model components from dialogue data. In this paper, we describe our current research on automatically learning dialogue strategies in the healthcare domain. We go through our systematic approach of learning dialogue model components from data, specifically user intents and the user model, as well as the agent reward function. We demonstrate our experiments on healthcare data from which we learned the dialogue model components. We conclude by describing our current research for automatically learning dialogue features that can be used in representing dialogue states and learning the reward function.
منابع مشابه
On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOptimizing Dialogue Strategy Learning Using Learning Automata
Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlyi...
متن کاملModeling Spoken Decision Making Dialogue and Optimization of its Dialogue Strategy
This paper presents a spoken dialogue framework that helps users in making decisions. Users often do not have a definite goal or criteria for selecting from a list of alternatives. Thus the system has to bridge this knowledge gap and also provide the users with an appropriate alternative together with the reason for this recommendation through dialogue. We present a dialogue state model for suc...
متن کاملTowards Learning Dialogue Structures from Speech Data and Domain Knowledge: Challenges to Conceptual Clustering using Multiple and Complex Knowledge Source
This paper introduces an engineering-oriented approach towards dialogue modelling. While dialogue models in existing dialogue systems usually are manually coded, or at least the data on which they are based is manually labeled, we investigate the possibility of learning dialogue models from a large set of example dialogues using real data in a spoken dialogue system. We assume the dialogue syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014